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Abstract

We model the vacuum as a structured medium with three fields: A
displacement (shear) ui, an orthonormal frame eaµ encoding rotations
(twist), and a scalar (scale) field σ. Using a constructive deriva-
tion that removes non-physical couplings, we demonstrate that (i) the
shear-only sector reproduces the Einstein–Hilbert [2, 3] action, (ii)
the twist-only sector yields Maxwell electrodynamics [4], and (iii) the
scale sector produces a Bergmann–Wagoner [5, 6, 7] scalar-tensor the-
ory. While a structured vacuum is able to recover familiar physics at
effective limits, is also has the potential to support additional medium-
induced interactions, including contributions to vacuum birefringence
and light-by-light scattering [21], and a spin–quadrupole channel for
gravitational radiation. We release an open-source simulator imple-
menting the model’s dynamics to facilitate reproducibility and to en-
able exploration of cross-couplings and testable consequences.

1 Why Revisit Empty Space?

In the nineteenth century, physicists pictured an ether—a rigid, all-pervasive
substrate that conveyed light yet remained otherwise undisturbed by matter.
With special relativity, twentieth century physicists dismissed the ether’s rest
frame, and quantum field theory recast the vacuum as the state nullified by
all annihilation operators. While these opposing views of the vacuum helped
aid the explanation of their respective physical theories, they both suffer
from a complementary deficiency: The ether carries too much structure (an
absolute rest frame), while the quantum vacuum carries too little.
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In this paper, we chart a course for a middle path: A structured vacuum
that is material enough to endow space-time with elasticity and spin, yet sym-
metric enough to satisfy the relativity principle. We argue that observable
phenomena arise as emergent behavior governed by the rules of interaction
among the medium that comprises the structured vacuum and we show that
our framework is flexible enough to encompass a variety of prior theories
in the appropriate limits. We also release as open source a simulator that
models a discrete version of our framework, which can be used to reproduce
our results and as a test-bed for exploring structured vacuum dynamics.

2 Statement of Principles

We begin by establishing two principles that will guide our search for the
dynamics that govern the structured vacuum. We develop the rest of our
structured vacuum from successive derivation from these first principles.

Relativity of Inertial Motion

The differential equations governing the vacuum medium retain
the same form in every inertial coordinate system.

No experiment confined to a moving laboratory can reveal its state of motion
with respect to the medium. Specifically, the speed of small amplitude elastic
or torsional waves that propagate through the medium are isotropic in every
inertial frame.

Universality of the Medium

All physical fields are collective excitations of a single continuous
medium whose local state is described by[

ui(x), eaµ(x)
]
,

where ui encodes translations and eaµ encodes intrinsic rotations.

The vacuum combines both elastic translations and torsional rotations in a
single substrate. This primitive geometry naturally gives rise to both com-
pressional waves as well as rotational waves without selecting a preferred rest
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frame. Figure 1 shows a visual representation of some examples of perturba-
tions the structured vacuum medium supports.

(a) Unperturbed medium. (b) Purely displaced medium.

(c) Purely rotated medium. (d) Combined perturbation medium.

Figure 1: Various forms of structured vacuum perturbation at a fixed time, t.

Building upon these two principles as a foundation, our goals for the rest
of this paper are to (a) find the most economical set of relativistically co-
variant differential equations obeyed by (ui, eaµ) and (b) to compare their
consequences with observation. Section 3 sets the stage by defining the kine-
matics of the structured vacuum’s inertial system; Section 4 shows how at
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two derivatives the linearized Einstein equation, the vacuum Maxwell equa-
tions [4], and a Bergmann-Wagoner [5, 6, 7] scalar-tensor theory of gravity
emerge; and Section 5 shows how at four derivatives the model adds addi-
tional precision to the prior theories with the Einstein–Hilbert [2, 3] action
of general relativity and the non-linear Maxwell equations emerging along
with other potential cross-terms that indicate the potential for the medium
to support vacuum birefringence, light-by-light scattering [21], and spin–
quadrupole gravitational radiation. Section 6 describes the design, imple-
mentation, and usage of our open source simulator.

3 Vacuum Geometry and Kinematics

We work in an inertial system K with coordinates

xµ = (t, x, y, z).

We use Greek letters to refer to external space-time indices. Material points
in the structured vacuum carry labels ξi = (ξ, η, ζ) and are fixed (Lagrangian
coordinates); their world-lines are the maps

Y µ : R3 × R → R4, (ξi, t) 7→ Y µ(ξi, t).

We raise and lower world indices with gµν and internal frame indices with
ηab:

gµν = eaµe
b
ν ηab, eaν = ηabe

b
ν , eaµ = gµνeaν .

For Lorentz matrices we use

Λµ
ν = ηµρ Λ

ρ
σ η

σν , (Λ−1)µν = ηµρΛσρησν .

Displacements It is useful to split the world-line into the identity embed-
ding plus a small deviation:

Y µ(ξ, t) = Y µ
0 (ξ, t) + uµ(ξ, t), Y µ

0 (ξ, t) = (t, ξ, η, ζ),

so that the spatial components (ux, uy, uz) measure the displacement of the
labelled point ξi from the reference rest frame.
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Rotations A local tetrad eaµ(ξ, t) attaches an orthonormal basis to each
point to record intrinsic rotations relative to its neighboring points,

eaµ(ξ, t), eaµ eaν = gµν , e
a
µ e

bµ = ηab.

We use Latin letters to refer to the internal material frame indices. Each
ea records how the element is rotated relative to its neighbours. We use
the set of material frames attached to each point to form the metric for the
observable geometry, gµν , and ideal flat-space, ηab.

As a matter of bookkeeping for this rotation-based field, we define a trans-
lation between local Lorenz gauge and teleparallel gauge. Let ωabµ denote a
flat spin connection [9, 10], such as,

Ra
bµν [ω] = 0.

Here, ω is pure gauge and carries no new dynamics; thus, we have

ωabµ =
(
Λ−1∂µΛ

)a
b,

for some Lorentz matrix Λ(x). We define,

Dµe
a
ν ≡ ∂µe

a
ν + ωabµe

b
ν − Γρµνe

a
ρ.

Without loss of generality—and motivated by our desire to keep our notation
tidy—we evaluate covariant derivatives in the inertial gauge, ωabµ = 0. At any

time, we can restore local Lorentz covariance with eaµ 7→ Λab(x)e
b
µ(x) and

the standard transformation ωabµ 7→ Λac(x)ω
c
dµ (Λ

−1)
d
b + Λac∂µ (Λ

−1)
c
b.

Dilations The determinant of the tetrad,

e ≡ det(eaµ),
√
−g = |e|.

Under x′µ = Λµνx
ν ,

e′(x′) = det
(
Λ−1

)
e(x), |e|′(x′) = | det

(
Λ−1

)
| |e|(x).

For proper orthochronous Lorentz transformations, | det(Λ−1)| = 1. As a
scalar density of weight +1, |e| obeys

|e|′(x′) =

∣∣∣∣det ∂x

∂x′

∣∣∣∣ |e|(x).
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We define the dimensionless dilaton

σ(x) ≡ ln
|e|(x)
|e|0

,

where |e|0 is a fixed reference density of the same weight; then σ is a true
scalar and ∇µσ a true covector.

Lorentz Boosts As an example, let K′ move with constant velocity v along
the x-axis of K. We set c = 1 so that time and length share the same units.
The standard Lorentz matrix is

Λµν =


γ −γβ 0 0

−γβ γ 0 0
0 0 1 0
0 0 0 1

 , β =
v

c
, γ =

1√
1− β2

.

The principle of relativity requires that uµ transforms as a contravariant
four-vector in every inertial frame:

u′µ(ξ, t) = Λµν u
ν(ξ, t), u′0 = −γβ ux,

u′x = γ ux, u′y = uy, u′z = uz (with u0 = 0 in K).
(1)

Carrying out the matrix multiplication, we get

u′0 = γ
(
u0 − β ux

)
, u′x = γ

(
ux − β u0

)
, u′y = uy, u′z = uz.

Since the time component u0 = 0 in K by construction, we find that

u′0 = −γβ ux, u′x = γ ux, u′y = uy, u′z = uz.

Thus, time-like components appear in K′ even if absent in K; they encode the
relativity of simultaneity for the stretched vacuum medium. If ui describes
the elastic “stretch” of a material measured at one instant, the boosted ob-
server sees that different parts of the medium have that stretch at different
times. The non-zero time component u′0 is the bookkeeping term that en-
codes when each part of the stretch happens in K′.

Similarly, take the tetrad eaµ in K: Under a boost Λµν between K and K′

the transformation law reads

e′aµ(x
′) = (Λ−1)νµ e

a
ν(x), e′aµe

′
aν = g′µν , g′µν = Λµ

ρΛν
σgρσ. (2)
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Only the external space-time slot ν transforms while the internal material
frame index a remains inert. Intrinsic orientation belongs to the medium
itself, not to the observer. In other words, if the medium is “stretched” in a
certain internal direction, every observer must agree which internal axis a is
stretched, but they will disagree on how the axis is decomposed into external
space-time coordinates.

Finally, take the (signed) determinant of the tetrad under a boost Λ:

e′ = det
(
(Λ−1)νµ e

a
ν

)
= det

(
Λ−1

)
det(eaν) = det

(
Λ−1

)
e. (3)

For a proper orthochronous Lorentz transformation we have det(Λ) = +1,
hence e′ = e and therefore |e′| = |e|. If parity or time orientation is flipped
(det Λ = −1), then e′ = −e while |e′| = |e|. Under global Lorentz coordi-
nate transformations the Jacobian has unit determinant, so |e| is numerically
unchanged; under general coordinate changes it transforms as a density as
stated above.

The set of rules in Equations (1), (2), and (3) provide us with the complete
Lorentz behavior we need to build invariant actions. In the next section,
we identify the only set of non-trivial differential equations that obey the
principles of relativity and universality.

4 Quadratic Vacuum Dynamics

To give the reader a feel for the way the vacuum is structured, we start with
a simplified quadratic action. We build this action from the first principles
we define in Section 2 and argue why the geometry of the vacuum must give
rise to the terms in the action. In Section 5, we use this same process to
derive the full-blown action (at least for the present work) at the quartic
order.

The displacement gradient ∂µuν splits into two parts: a symmetric part
representing strain and an antisymmetric part representing rigid rotation. To
linear order, only the symmetric part changes lengths. We therefore write
the effective metric as the pullback of the ambient Minkowski metric by the
embedding,

gµν = ∂µY
α ∂νYα,

where for small displacements, we write

Y α
0 (ξ, t) = (t, ξ, η, ζ), Y α = Y α

0 +uα, gµν = ηµν+2 ∂(µuν)+O
(
(∂u)2

)
.
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From here on we work in the Eulerian description, identifying Y α(x) = xα+
uα(x) near the identity so that ∂µ ≡ ∂/∂xµ.

The antisymmetric derivative of the tetrad, ∂[µe
a
ν], isolates the piece of

the action that cannot be absorbed into a smooth metric change, and supplies
torsion [8],

T a
µν = 2D[µe

a
ν].

At the ground state, uµ = 0 and gµν reduces to the flat background, ηµν ;
similarly, when eaµ = δaµ then T a

µν = 0, and no torsion is sourced. Since
both metric perturbations (hµν ≡ gµν − ηµν) and torsion (T a

µν) vanish in
equilibrium, expanding their action to second order in derivatives suffices to
capture low-energy waves and their leading interactions, which we pursue
next.1

4.1 Quadratic Action

Our initial goal is to write an effective field theory for long-wavelength,
small-amplitude excitations of a continuous structured vacuum medium. We
identify three necessary and sufficient criteria to guide our search:

1. Locality. We enforce that the energy stored at any space-time point
x depends only on the fields at x and on a finite number of derivatives
evaluated at x. The energy at x may not depend on the values of the
fields at some distant point y ̸= x. This ensures that changes in a far
away field do not instantaneously change forces over all space, which
would contradict both prior experimental evidence and relativity.

2. Covariance. We require that the laws that govern the system look the
same to every inertial observer. This is meant to mimic the Lorentz
symmetry that we observe empirically in nature. Practically speak-
ing, this implies that all pieces of the action must be constructed from
tensors whose covariant combination keeps the same algebraic arrange-
ment of indices.

3. Scalarity. We stipulate that after we contract all Greek (space-time)
and Latin (internal) indices, the integrand is a scalar quantity. In-
tegrating that scalar over space-time gives a single real number: the

1We will examine non-linear couplings between these excitations in subsequent sections.
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action S. A scalar has the same numerical value in any coordinate sys-
tem, ensuring the variation δS = 0 leads to equations of motion that
do not depend on the observer’s inertial frame or the choice of inter-
nal basis of the medium. Because the action is a scalar, the derived
field equations carry the correct form to covariantly commute from one
space-time inertial frame—or one internal basis—to another.

To satisfy locality, we leverage the local, Lorentz-covariant nature of the
independent degrees of freedom of the structured vacuum uµ, eaµ, and |e| that
we demonstrated in Equations (1), (2), and (3). These quantities become
the only admissible building blocks for our action. From these, we define the
following first-derivative tensors:

Sµν ≡ ∇(µuν), T a
µν ≡ 2D[µe

a
ν], ∇µσ,

In the teleparallel (inertial) gauge with ωabµ = 0 and Levi–Civita Γ, we have
T a

µν = 2 ∂[µe
a
ν]. Starting from these first-derivative tensors, we then seek

all quadratic derivatives that satisfy our criteria of locality, covariance, and
scalarity. This leaves us with only the following invariants.2

Shear Invariant SµνS
µν. Contracting the symmetric strain tensor with

itself gives us

SµνS
µν = ∇(µuν) ∇(µuν) = (∂u)2 (to linear order).

Each of the two S terms contributes one derivative and the Greek indices are
fully contracted; since no internal (Latin) index is involved, (∂u)2 satisfies
our criteria. 3

Twist Invariant T a
µνTa

µν. With torsion we must also contract the inter-
nal index a. Working in the teleparallel (inertial) gauge ω = 0 and with
Levi–Civita Γ, we start by expanding:

T a
µν ≡ 2 ∂[µe

a
ν] = ∂µe

a
ν − ∂νe

a
µ, (4)

2For a listing of the candidates that do not satisfy these criteria, see Appendix A.
3Though u and e are independent fields, because they both induce the same metric, gµν ,

their volume pieces obey σ = Sµ
µ + O

(
(∂u)2

)
. The missing (Sµ

µ)
2 term is a deliberate

choice: we keep isotropic dilation in the scale field σ and keep only its gradient term at
quadratic order.
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and then contracting, substituting, and distributing:

T a
µνTa

µν = (∂µe
a
ν − ∂νe

a
µ) (∂

µea
ν − ∂νea

µ)

= 2 (∂µe
a
ν ∂

µea
ν − ∂µe

a
ν ∂

νea
µ)

We can see from this expanded form that the twist invariant is built from
two distinct contractions of the first derivatives of the tetrad: the direct
contraction ∂µe

a
ν∂

µea
ν and the cross contraction ∂µe

a
ν∂

νea
µ. Each of these

supply second-order derivatives, the antisymmetric indices match, and the
internal index a is paired with itself leading to a scalar value.

Scale invariant (∇σ)2. Because σ is a true scalar, the contraction (∇µσ)
(∇µσ) is a true scalar. With the standard measure

√
−g this yields a

weight-+1 Lagrangian density that is diffeomorphism and local-Lorentz in-
variant:

(∇µσ)(∇µσ) = (∇µσ)
2 .

Second-Order Action We now have all the ingredients we need to write
down the action to second-order:

S(2) =

∫
d4x

√
−g

[
λS SµνS

µν︸ ︷︷ ︸
Shear

+
1

4
λT T

a
µνTa

µν︸ ︷︷ ︸
Twist

+λC (∇µσ)(∇µσ)︸ ︷︷ ︸
Scale

]
.

(5)

Note that we have chosen the metric signature (−+++) so that, in flat
space, the quadratic action’s kinetic terms behave like normal relativistic
wave equations if the λ coefficients are positive. As a reminder, for index
operations we use,

Sµν = gµρgνσSρσ, Taµν = ηab T
b
µν , T aµν = gµρgνσT a

ρσ, T ρ
µν = ea

ρ T a
µν .

Finally, as we discussed before, we simplify our bookkeeping by keeping the
teleparallel gauge, ωabµ = 0, which is why there is no quadratic term built
from the spin connection.

4.2 Second-Order Field Equations

We vary the action with respect to shear, twist, and compression to obtain
the corresponding field equations. Each of our three invariants is independent
of the others, so we proceed to vary each term individually.
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Shear Field Equation (δS(2),S) The shear sector for the action is

S(2),S = λS

∫
d4x

√
−g SµνS

µν , Sµν = ∇(µuν).

We vary the action with respect to uν (holding gµν fixed in this sector):

δS(2),S = 2λS

∫
d4x

√
−g Sµν ∇(µδuν) = 2λS

∫
d4x

√
−g Sµν ∇µδuν ,

where we used the symmetry of Sµν . Integrating by parts and discarding the
boundary term,

δS(2),S = −2λS

∫
d4x

√
−g (∇µS

µν) δuν .

Our resulting Euler–Lagrange equation is therefore,

∇µS
µν = 0. (6)

Equivalently, using [∇µ,∇ν ]uµ = Rν
ρu

ρ,

∇µS
µν = 0 ⇐⇒ □uν +∇ν(∇· u) +Rν

ρ u
ρ = 0.

In the weak field limit, we have,

gµν → ηµν , ∇µ = ∂µ,

which gives us,

∂µS
µν = 0, Sµν =

1

2
(∂µuν + ∂νuµ) .

In this limit, Equation (6) becomes,

∂µ∂
µuν + ∂ν (∂ · u) = 0.

Choosing Lorenz gauge, ∂ · u = 0, the shear field equation recovers the
d’Alembert equation:

□uν = 0, □ ≡ ∂µ∂
µ. (7)
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Taking this process one step further, to recover the linearized Einstein
equations, we can perturb the metric and take the reverse trace:

hµν ≡ 2Sµν = ∂µuν + ∂νuµ, h̄µν ≡ hµν −
1

2
ηµνh.

Taking the divergence of (6) in flat space gives the divergence constraint

∂µh
µν = 0.

The standard harmonic (Lorenz) gauge is ∂µh̄
µν = 0; in the case ∂· u = 0 we

have h = 2 ∂ · u = 0, so h̄µν = hµν and the two conditions coincide. Under
this gauge, acting with □ on hµν = ∂µuν + ∂νuµ and using (7) yields

□ h̄µν = 0, (8)

which matches the vacuum linearized Einstein equation in harmonic gauge.4

This shows how the shear sector of the action is that it transports massless
spin-2 excitations through the structured vacuum.

Twist Field Equation (δS(2),T ) We next proceed to vary the twist sector
of the action. Recall that, to simplify our bookkeeping—and without loss of
generality—, we work in a flat spin connection. We start by defining,

DµXaν ≡ ∇µXaν + ωa
b
µXbν, Ra

bµν [ω] = 0,

where ∇µ is the Levi–Civita derivative on space-time indices, ω is the flat
spin connection, and Dµ reduces to ∇µ in the inertial gauge (ω = 0), and to
∂µ further in Minkowski coordinates where Γ = 0.

The twist sector of the action is given by,

S(2),T =
1

4
λT

∫
d4x

√
−g T a

µνTa
µν ,

which, when we vary with respect to eaν (holding gµν fixed), we arrive at,

δT a
µν = 2D[µδe

a
ν], ∴ δ (T a

µνTa
µν) = 4Ta

µν Dµδe
a
ν ,

where the factor of 4 comes from the product 2 × 2 with the definition of
T a

µν contributing one factor of 2 and the product rule contributing another.

4In Section 5, we show how the quartic action recovers the Einstein–Hilbert action [2, 3].
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Inserting this into the action and integrating by parts, we get,

δS(2),T = λT

∫
d4x

√
−g Ta

µνDµδe
a
ν

= −λT

∫
d4x

√
−g (DµTa

µν) δeaν ,

where the boundary term vanishes to ensure that only bulk terms contribute
to the field equation. Our resulting Euler–Lagrange equation becomes,

DµTa
µν = 0. (9)

with DµTa
µν = ∇µTa

µν + ωa
b
µ Tb

µν .
As before, we can take the weak field limit, where,

gµν → ηµν , ωa
bµ → 0 (inertial gauge),

and,
Dµ = ∂µ, T a

µν = 2 ∂[µe
a
ν], ∂µTa

µν = 0. (10)

Pick any fixed internal unit vector5 na and define the abelian projection

Aµ[n] ≡ na e
a
µ, Fµν [n] ≡ na T

a
µν .

With flat spin connection (R[ω] = 0) and a covariantly constant internal
vector na (that is, Dµna = 0), the twist equations project to

DµF
µν [n] = 0, D[λFµν][n] = 0.

In the inertial gauge ω → 0 this reduces to ∂µF
µν [n] = 0 and ∂[λFµν][n] =

0. For notational simplicity we take na = δ0̂a below, so Aµ ≡ Aµ[n] and
Fµν ≡ Fµν [n]. In this limit, Equation (10) recovers the vacuum Maxwell
equations [4] in our working limit where ω = 0,

∂µF
µν [n] = 0, ∂[λFµν][n] = 0, (for any constant na).

This shows that the twist sector transports massless spin-1 excitations through
the structured vacuum.

5The internal index a transforms in the vector representation of the local Lorentz group
SO(1, 3). Picking any covariantly constant unit vector na defines an abelian U(1) subsector
via Aµ[n] = nae

a
µ and Fµν [n] = naT

a
µν . This is not a Yang–Mills SU(2): there are no

nonabelian self-interactions here. Our choice na = δ0̂a is merely a convenient projection;
any such na works.
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Scale Field Equation (δS(2),C) Finally, we vary the scale sector of the
action,

S(2),C = λC

∫
d4x

√
−g (∇µσ) (∇µσ) ,

like so,
δ
[
(∇σ)2

]
= 2∇µσ∇µδσ.

Inserting this back into the action, and integrating by parts, we get,

δS(2),C = 2λC

∫
d4x

√
−g ∇µσ∇µδσ

= −2λC

∫
d4x

√
−g (∇µ∇µσ) δσ.

once again taking the surface term to be 0 to ensure that only bulk terms
contribute to the field equation. The Euler–Lagrange equation for the scale
term is then,

∇µ∇µσ = 0, (11)

which is the covariant massless Klein–Gordon equation for a scalar field σ.
In the weak field limit, we once again have,

gµν → ηµν , ∇µ = ∂µ,

which results in the flat-space equations,

□σ = 0, □ ≡ ∂µ∂
µ.

We next seek to relate the scale field equation of motion to its Bergmann–
Wagoner [5, 6, 7] form. For this mapping we use the Einstein–Hilbert [2, 3]
term together with the scale kinetic term:

S(2),SC ≡ λS

∫
d4x

√
−g R(g) + λC

∫
d4x

√
−g (∇σ)2.

We factor out the conformal component by writing the full tetrad, eaµ,
as a product of an overall scale σ1/3 times a unit-determinant tetrad:

eaµ = σ1/3 ẽaµ, det (ẽaµ) = 1.
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Here σ > 0 denotes a scale factor, not the dilaton defined earlier as σ =

ln(|e|/|e|0); they are related by |e| = σ4/3 ⇒ σ =
(
|e|/|e|0

)3/4
. The metric

then decomposes as,

gµν = σ2/3 g̃µν ,
√
−g = σ4/3

√
−g̃,

where the tilde quantities carry no overall scale and all dilations now live in
the single scalar field σ(x).

Using the Weyl-rescaling identity for the Ricci scalar (Ω = σ1/3),

R(g) = Ω−2
[
R̃− 6 ∇̃2 lnΩ− 6(∇̃ lnΩ)2

]
,

and keeping the Laplacian as a boundary term, the gravitational term be-
comes

λS

∫
d4x

√
−g R(g) = λS

∫
d4x σ4/3

√
−g̃ × σ−2/3

[
R̃ + 6

(
∇̃ lnσ1/3

)2]
= λS

∫
d4x σ2/3

√
−g̃

[
R̃ +

2

3
σ−2

(
∇̃σ

)2]
= λS

∫
d4x

√
−g̃

[
σ2/3 R̃ +

2

3
σ−4/3

(
∇̃σ

)2]
.

We next factor out the conformal component from the scale term:

λC

∫
d4x

√
−g (∇µσ) (∇µσ) = λC

∫
d4x

√
−g̃ σ2/3

(
∇̃µσ

)(
∇̃µσ

)
.

In order to have a canonical Bergmann–Wagoner [5, 6, 7] structure, we rescale
the scalar,

ϕ := σ2/3, ∇̃µσ =
3

2
ϕ1/2 ∇̃µ ϕ,

(
∇̃σ

)2

=
9

4
ϕ
(
∇̃ϕ

)2

.

The total action then becomes,

S(2),SC =

∫
d4x

√
−g̃

{
λS

[
ϕ R̃ +

3

2
ϕ−1

(
∇̃ϕ

)2]
+ λC

[9
4
ϕ2
(
∇̃ϕ

)2]}
.

We observe that the Jordan-frame Brans–Dicke action is,

S(2),BD =
1

16π

∫
d4x

√
−g̃

[
ϕ R̃− ω (ϕ)

ϕ

(
∇̃ϕ

)2
]
.
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Comparing the two actions, we identify λS and the field-dependent ω(ϕ) as,

λS =
1

16π
, ω (ϕ) = −3

2
− 36π λC ϕ3.

λC therefore sets the scalar sector. When λC = 0 we obtain Brans–
Dicke with ωBD = −3

2
; for large λC the scalar is driven to (nearly) constant,

recovering Einstein gravity with an effective Newton constant rescaled by
that constant ϕ.

This completes our derivation of the second-order field equations for the
structured vacuum. We next turn to the quartic action, which will allow us to
recover the Einstein–Hilbert [2, 3] action of general relativity. In addition, we
will show how the quartic action supports new physics, such as vacuum bire-
fringence, light-by-light scattering [21], and spin–quadrupole gravitational
radiation.

5 Quartic Vacuum Dynamics

We approach the design of our quartic vacuum dynamics using an approach
similar to our quadratic dynamics. We start with our three first-derivative
tensor building blocks from Section 4.1 (with T a

µν≡ 2D[µe
a
ν]; in the inertial

gauge ωabµ = 0 we have Dµe
a
ν = ∇µe

a
ν and hence T a

µν = 2∇[µe
a
ν]):

Sµν ≡ ∇(µuν), T a
µν ≡ 2∇[µe

a
ν], ∇µσ.

We then seek a local Lagrangian that is a quartic polynomial in the base first
derivatives (and quadratic in these three tensors).

5.1 Quartic Action

To build an effective quartic action we want one—and only one—term for
each truly different way any fields can interact. So, in addition to the neces-
sary and sufficient criteria of locality, covariance, and scalarity, we imposed
for the quadratic action in Section 4.1, we impose an additional set of four
criteria that additionally apply at the fourth-order:

1. Integral Independence. We discard as redundant any terms that
differ only by a total divergence ∂α (. . . ). Because the surface term
vanishes for finite-energy field configurations (such as the ones we as-
sume), the two terms produce identical equations of motion.
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2. Algebraic Uniqueness. We avoid index contractions that cause a
linear combination to collapse to zero (for example: symmetry, anti-
symmetry, trace, Schouten). Since these terms are the same tensor
written in two ways, keeping both just renames a coefficient, so we
leave them out.

3. Field Redefinition. We remove from the action any terms that equal
another term plus a value proportional to the quadratic-order equations
of motion. We do this because we can use the quadratic equations of
motion to move that value into a redefinition of the fields or parameters.

4. Symmetry Projection. We exclude any terms that flip sign under
parity or time-reversal. This is because if the vacuum and experimental
data respect parity and time-reversal, then the odd term cannot appear
(or, if it does, its coefficient must be zero).

Restricting to expressions quartic in first derivatives, the independent
scalar monomials are the quadratic products of the three quadratic scalars,

S2≡ SµνS
µν , T 2≡ T a

µνTa
µν , and (∇σ)2≡ ∇µσ∇µσ.

Thus the six basic quartic monomials are

(S2)2, (T 2)2,
(
(∇σ)2

)2
, S2T 2, S2(∇σ)2, T 2(∇σ)2.

Applying our fourth-order necessary and sufficient criteria, we are left with
only the following invariants.6

Shear Invariant SµνS
νρSρσS

σµ−SµνS
µνSρσS

ρσ. We contract the quadratic-
order shear tensor with itself to get the quartic-order shear invariant. Any
total divergence of an S3 product reduces to a cubic-order term +∂S, which
gets eliminated after integration by parts, so our integral independence cri-
terion is satisfied.

In terms of the algebraic uniqueness criterion, there are two possible S4

traces and they are linearly independent, so we choose the Weyl-type differ-
ence in order to remove any double counting under index symmetry. Since
∇µS

µν = 0 cannot turn S4 into another scalar, we cannot use field redefini-
tion to eliminate this term, so we keep it.

Finally, the shear invariant is even parity and time-reversal; it meets all
of our quartic-order necessary and sufficient criteria.

6For a listing of the candidates that do not satisfy these criteria, see Appendix A.
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Twist Invariants (T a
µνTa

µν)2 + (T ·T̃ )2. We contract the quadratic-order
twist tensor with itself to get the quartic-order twist invariant. Any diver-
gence of a T 3 term vanishes by antisymmetry, or integration by parts does
not produce any duplicated terms.

Any alternative arrangement of the T 4 indices either collapses to the twist
invariant or zero via antisymmetry, so the twist invariant is algebraically
unique. The twist invariant cannot be eliminated by field redefinition because
∂µTα

µν = 0 never appears inside T 2.
Finally, the twist invariant is even under parity and time reversal. A

second parity-even invariant in four dimensions is
(
T · T̃

)2
with T̃ a

µν ≡
1
2
εµνρσT

a ρσ. While at the quadratic order, we excluded the linear pseu-

doscalar T · T̃ by symmetry projection; its square is allowed in the quartic
order and we keep it.

Scale Invariant (∇µσ∇µσ)2. Similarly, we contract the quadratic-order
scale tensor with itself to get the quartic-order scale invariant. We dis-
card the candidate (□σ)2 because it differs from our chosen scale invariant
only by a total divergence after integration by parts, making it not integral-
independent.

There is only one way to contract four gradients of a single scalar, so
the scale invariant satisfies algebraic uniqueness. At quadratic order the
scale equation of motion is □σ = 0, since our proposed quartic-order scale
invariant does not contain □σ, it passes our field redefinition criteria.

And since the scale invariant is a scalar, it is parity-even automatically,
satisfying symmetry projection.

Helixity Invariant SµνSµνT
α
ρσTα

ρσ. The helixity invariant is a product
of the shear and twist invariants. The form we keep satisfied integral inde-
pendence because it does not reduce to an S2 or T 2 term after integration
by parts. In terms of algebraic uniqueness, the helixity invariant is the only
independent scalar with two S and two T factors after index symmetry.

Neither ∂µS
µν nor ∂µT

µν are proportional to the quadratic-order equa-
tions of motion, so the helixity invariant passes the field redefinition criterion.

Finally, the helixity invariant satisfies symmetry projection as it is even
parity and time-reversal.
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Strain Invariant SµνS
µν∇ρσ∇ρσ. The strain invariant is a product of the

shear and scale invariants. The form we keep satisfied integral independence
because its total derivative does not produce a term like Sµν∇µSνρ∇ρσ that
contains an equation of motion.

In terms of algebraic uniqueness, the strain invariant is the only non-zero
symmetric contraction of two S and two ∇σ factors. The strain invariant is
safe from field redefinition because neither quadratic equation of motion for
shear or scale can be factored out of it.

Finally, the strain invariant satisfies symmetry projection as it is parity-
even.

Spirality Invariant Tα
ρσTα

ρσ∇ρσ∇ρσ. The spirality invariant is a prod-
uct of the twist and scale invariants. Similar logic to the strain invariant
applies here: The form we keep satisfied integral independence because its
total derivative does not produce a term like Tα

ρσ∇αT
ρσ
ν ∇νσ that contains

an equation of motion.
In addition, the spirality invariant is the only independent symmetric

scalar with T 2 and (∂σ)2 factors, so it satisfies algebraic uniqueness. The
spirality invariant is safe from field redefinition because it does not contain
any on-shell factors of the quadratic equations of motion for twist or scale.

Finally, the spirality invariant satisfies symmetry projection as it is parity-
even.

This concludes our search for quartic-order invariants. We next move on to
write the full quartic action, which will allow us to recover the Einstein–
Hilbert [2, 3] action of general relativity. In addition, we will show how the
quartic action supports new physics, such as vacuum birefringence, light-by-
light scattering [21], and spin–quadrupole gravitational radiation.
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Fourth-Order Action We can now write the full quartic action:

S(4) =

∫
d4x

√
−g

{
αS

(
SµνS

νρSρσS
σµ − SµνS

µνSρσS
ρσ
)

︸ ︷︷ ︸
Shear

+

1

4
αT

[(
T a

µνTa
µν
)2

+
(
T a

µνT̃a
µν
)2
]

︸ ︷︷ ︸
Twist

+

αC
(
∇µσ∇µσ

)2︸ ︷︷ ︸
Scale

+αH SµνSµν T
a
ρσTa

ρσ︸ ︷︷ ︸
Helixity

+

αR SµνS
µν ∇ρσ∇ρσ︸ ︷︷ ︸
Strain

+αP T a
ρσTa

ρσ∇ρσ∇ρσ︸ ︷︷ ︸
Spirality

}
.

(12)

5.2 Fourth-Order Field Equations

As before, we vary the action with respect to shear, twist, scale, then, ad-
ditionally, the new invariants helixity, strain, and spirality to obtain the
corresponding field equations. Each of our six invariants is independent of
the others, so we proceed to vary each term individually.

5.2.1 Shear as a Gravitational Field

We begin by varying the quartic action with respect to the shear tensor,
holding gµν fixed in this sector,

Sµν = ∇(µuν), δSµν = ∇(µδuν)

Terms in the action that do not contain the shear tensor do not contribute
to the shear field equation.

We write the shear-dependent part of the action,

S(4),S =

∫
d4x

√
−g

[
αS (SµνS

νρSρσS
σµ − SµνS

µνSρσS
ρσ)

+ αHSµνS
µνT a

ρσTa
ρσ + αRSµνS

µν∇ρσ∇ρσ

]
.

20



As we can see, in addition to pure shear, the shear-dependent part of the
action also contains helixity and strain.

For the pure shear term, we have,

δ(SµνS
νρSρσS

σµ − SµνS
µνSρσS

ρσ) = 4 (SµρSρσS
σν − SµνSρσS

ρσ) δSµν .

and for the mixed terms we have,

δ (SµνS
µνT a

ρσTa
ρσ) = 2T a

ρσTa
ρσSαβδSαβ,

δ (SµνS
µν∇ρσ∇ρσ) = 2∇ρσ∇ρσSαβδSαβ.

Let

Cµν = 4αS(S
µρSρσS

σν − SµνSρσS
ρσ) + 2αH T a

ρσTa
ρσSµν + 2αR (∇σ)2Sµν .

Using the symmetry of Cµν , we have Cµν∇(µδuν) = Cµν∇µδuν . Therefore

δS(4),S =

∫
d4x

√
−g Cµν ∇µδuν ,

Integrating by parts (and discarding the boundary term) yields

δS(4),S = −
∫

d4x
√
−g

(
∇µC

µν
)
δuν ,

so the Euler–Lagrange equation is ∇µC
µν = 0.

Writing the full Euler–Lagrange equation for the shear field, we have,

∇µ

[
4αS (S

µρSρσS
σν − SµνSρσS

ρσ)

+ 2αHT
a
ρσTa

ρσSµν + 2αR∇ρσ∇ρσSµν
]

= 0.

(13)

We next set out to relate the pure shear part of the shear field Euler–
Lagrange equation to Einstein–Hilbert [2, 3]. We start by isolating the pure
shear part,

∇µ [4αS (S
µρSρσS

σν − SµνSρσS
ρσ)] = 0.

We then relate Sµν to the metric perturbation hµν :

Sµν ≡ 1

2
hµν , SρσS

ρσ =
1

4
hρσh

ρσ, SνρSρσS
σµ =

1

8
hνρhρσh

σµ,
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to get,

4αS

(
1

8
hµρhρσh

σν − 1

8
hµν hρσh

ρσ

)
= αS

(
1

2
hµρhρσh

σν − 1

2
hµνhρσh

ρσ

)
.

(14)
We next write the Einstein–Hilbert action in terms of hµν . For the metric
gµν = ηµν + hµν , the curvature scalar expands to,

√
−g R = −1

4
hµν□h̄µν +

1

2
hµρhρσh

σν − 1

2
hµνhρσh

ρσ +O
(
h4
)
,

where h̄µν = hµν − 1
2
ηµνh. Notice how the pure shear field equation, when

related to the metric perturbation in Equation (14), is proportional to cubic
part of the Einstein–Hilbert action.

We next vary the Einstein–Hilbert action with respect to hµν . Since the
action is,

SEH =
1

16πG

∫
d4x

√
−g R,

when we take the variation, we have,

δSEH
δhµν

= − 1

32πG
□ h̄µν +

1

16πG

(
1

2
hµρhρσh

σν − 1

2
hµνhρσh

ρσ

)
.+O

(
h3
)
.

Recall the quadratic-order shear field equation that reproduced the lin-
earized Einstein equation[2, 3] in Equations (6) and (8):

∇µS
µν = 0 ⇐⇒ □ h̄µν = 0.

Setting λS = 1
32πG

and αS = 1
16πG

, we see that the pure shear part of the
quadratic- and quartic-order field equations of the structured vacuum com-
bine to give us the Einstein–Hilbert action:

δSS
δuν

= δS(2),S + δS(4),S +O
(
h3
)

= −λS (∇µS
µν) + αS

(
1

2
hµρhρσh

σν − 1

2
hµνhρσh

ρσ

)
= − 1

32πG
(∇µS

µν) +
1

16πG

(
1

2
hµρhρσh

σν − 1

2
hµνhρσh

ρσ

)
.

With those choices for λS and αS, the total variation of S(2),S + S(4),S equals
δSEH , and we have,

δSS
δuν

=
δSEH
δhµν

= 0 ⇐⇒ Gµν = 0,
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where Gµν is the Einstein vacuum equation. Thus, we have shown that the
Einstein–Hilbert theory arises directly as the pure-shear limit of the struc-
tured vacuum, establishing spin-2 gravitation as the shear sector of the struc-
tured vacuum.

5.2.2 Twist as a Gauge Field

We now revisit the twist-dependent sector of the quartic action. Introducing
the Hodge dual T̃ a

µν ≡ 1
2
Eµν

ρσT a
ρσ with Eµνρσ =

√
−g εµνρσ, we include the

second parity-even quartic invariant:

S(4),T =

∫
d4x

√
−g

{
1

4
αT

[(
T a

ρσTa
ρσ
)2

+
(
T a

ρσT̃a
ρσ
)2
]

+ αH SµνSµν T
a
ρσTa

ρσ + αP T a
ρσTa

ρσ ∇ρσ∇ρσ

}
,

where T a
µν ≡ 2∇[µe

a
ν] and Sµν and σ are background fields that do not vary

in the present twist variation.
Define the scalar invariant Q ≡ T a

ρσTa
ρσ. Define also the pseudoscalar

B ≡ T a
ρσT̃a

ρσ. Using δT a
µν = 2∇[µδe

a
ν], we have

δQ = 2Ta
ρσ δT a

ρσ = 4Ta
ρσ∇ρδe

a
σ,

where the last equality follows from antisymmetry in ρσ. Therefore,

δ

[
1

4
αTQ

2

]
=

1

2
αT QδQ = 2αT QTa

µν ∇µδe
a
ν ,

δ

[
1

4
αTB

2

]
=

1

2
αT B δB = 2αT B T̃a

µν ∇µδe
a
ν ,

δ
[
αHS

2 T ·T
]
= 4αH SρσSρσ Ta

µν ∇µδe
a
ν ,

δ
[
αP (∇σ)2 T ·T

]
= 4αP (∇σ)2 Ta

µν ∇µδe
a
ν ,

(15)

with (∇σ)2 ≡ ∇ρσ∇ρσ.
Inserting (15) into δS(4),T and integrating by parts (discarding boundary
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terms) gives

δS(4),T = −
∫

d4x
√
−g ∇µ

[
2αT

(
QTa

µν +B T̃a
µν
)

+ 4αH S2 Ta
µν + 4αP (∇σ)2 Ta

µν

]
δeaν .

Since δeaν is arbitrary, we obtain

∇µ

[
2αT

(
QTa

µν +B T̃a
µν
)

+ 4αH SρσSρσ Ta
µν + 4αP (∇σ)2 Ta

µν

]
= 0.

(16)

To expose the gauge structure, choose a fixed internal time-like label
α = 0̂ and define

Aµ ≡ e0̂µ, Fµν ≡ T 0̂
µν .

Recalling Equation (4),

T a
µν = 2∇[µe

a
ν] = ∂µe

a
ν − ∂νe

a
µ,

we have

Fµν = ∂µAν − ∂νAµ, ∇[λFµν] = 0 (Bianchi identity).

F̃µν ≡ 1
2
Eµν

ρσ Fρσ, Eµνρσ =
√
−g εµνρσ.

The α = 0̂ component of (16) becomes a non-linear gauge equation with a
field-dependent constitutive factor,

∇µ

[
ΛF µν + Λ̃ F̃ µν

]
= 0,

Λ ≡ 2αT Q+ 4αH SρσSρσ + 4αP (∇σ)2, Λ̃ ≡ 2αT B,
(17)

where Q = T a
ρσTa

ρσ is the full twist invariant (its variation with respect to

e0̂µ arises only through T 0̂
ρσ = Fρσ).

In the pure-twist limit (αH = αP = 0), the gauge equation becomes

∇µ 2αT

[
QF µν +B F̃ µν

]
= 0.
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a cubic, non-linear electrodynamics driven by the torsional scalarQ = T a
ρσTa

ρσ,
which rescales the usual Maxwell term F µν , and by the torsional pseudoscalar
B = T a

ρσT̃a
ρσ, which multiplies the dual F̃ µν and induces an axion-like

magneto-electric mixing [12, 13, 14, 15] (the torsional analogue of E ·B). In
parity-even backgrounds B = 0 and the F̃ piece vanishes. When Λ = 2αTQ
and Λ̃ = 2αBB are effectively constant, such as when SρσSρσ and (∇σ)2 are
constant and Q,B are slowly varying or replaced by background values, the
Bianchi identity ∇µF̃

µν = 0 reduces (17) to

Λ∇µF
µν = 0,

which—after an overall rescaling—is the vacuum Maxwell equation [4]

∇µF
µν = 0.

5.2.3 Scale as a Dilaton Field

We next turn our attention to the scale field, σ. As a reminder, the scale-
dependent portion of the quartic action is,

S(4),C =

∫
d4x

√
−g

[
αC (∇µσ∇µσ)2

+ αRSµνS
µν∇ρσ∇ρσ

+ αPT
a
ρσTa

ρσ∇ρσ∇ρσ

]
,

and it consists of a pure scale term, a strain term, and a spirality term.
For the pure scale term,

X ≡ (∇σ)2 = ∇µσ∇µσ,

δX = 2∇µσ∇µδσ,

δ(X2) = 4(∇σ)2∇µσ∇µδσ.

For the strain and spirality terms,

δ
[
SµνS

µν (∇σ)2
]
= 2SµνS

µν ∇ρσ∇ρδσ,

δ
[
T a

ρσTa
ρσ (∇σ)2

]
= 2T a

ρσTa
ρσ∇ρσ∇ρδσ.
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Inserting these into the action and integrating by parts (discarding the
boundary term), we get

δS(4),C = −
∫

d4x
√
−g ∇µ

(
4αC(∇σ)2∇µσ + 2αRSρσS

ρσ∇µσ

+ 2αPT
a
ρσTa

ρσ∇µσ
)
δσ.

And the resulting Euler–Lagrange equation for the scale field is

∇µ

(
4αC(∇σ)2∇µσ + 2αRSρσS

ρσ∇µσ + 2αPT
a
ρσTa

ρσ∇µσ
)
= 0.

This concludes our analysis of the structured vacuum quartic action, Equa-
tion (12). We have shown that the structured vacuum naturally leads to the
emergence of relativistic gravity from its pure shear interactions, electromag-
netism from its pure twist interactions, and that the scale field σ behaves as a
dilaton field. We next turn to some of the falsifiable predictions that emerge
from the quartic action.

5.3 Falsifiable Predictions

At quadratic order the structured vacuum behaves linearly: shear (spin-2),
twist (spin-1), and scale (scalar) excitations propagate without interacting
with each other. At the quartic order, however, the local “stiffness” of the
medium depends—very weakly—on the energy carried by the fields them-
selves: Strong fields slightly reshape the medium through which other fields
travel. That single idea underlies the three effects discussed here.

Vacuum birefringence. A strong, slowly varying excitation (for example,
a static magnetic-like twist background or a standing cavity mode) imprints
a preferred direction in the otherwise isotropic vacuum medium. A weaker
probe wave then sees two distinct normal modes: One polarized along the
imprint and one across it. Because the quartic terms let the background mod-
ulate the local electromagnetic-like stiffness, the two modes acquire slightly
different phase velocities—a birefringent split—even though no material is
present. The model predicts that any persistent anisotropy seeded by strong
twist, shear texture, or gentle scale gradients turns the vacuum into a weak,
field-dependent birefringent medium.
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Light-by-light scattering. Wave packets in this framework are self-propa-
gating energy oscillations between fields. When two high-energy wave pack-
ets overlap, their combined intensity can slightly alter the local properties
of the medium in the overlap region, creating a transient refractive grating.
The waves then exchange energy and momentum through this self-induced
grating—classically, a tiny four-wave–mixing process; in particle language,
photon–photon scattering [21]. No charges or matter are required; the struc-
tured vacuum itself mediates the interaction. The effect scales with field
intensity, overlap volume, and frequency, and is therefore exceptionally small
for typical laboratory fields—but it is not forbidden.

Spin–quadrupole gravitational radiation. Because all vacuum sectors
share the same geometric volume element, intense twist fields carry stress-
energy and thus gravitate. When that stress-energy varies in time with a
quadrupolar pattern, it sources shear (spin-2) waves even in the absence of
moving masses. A particularly clean way to create such a source is opti-
cal spin flow: Crossed or counter-propagating circularly polarized beams,
or a high-Q standing mode, produce a time-varying pattern of electromag-
netic spin density with quadrupolar symmetry. The shear sector responds
by emitting gravitational waves at twice the optical carrier frequency—hence
“spin–quadrupole.” The amplitude is tiny but, in principle, accumulates co-
herently with stored energy, frequency, and interaction volume, making engi-
neered cavities natural targets for exploration. the effective medium without
introducing matter.

The predictions above provide viability claims grounded in the structure of
the quartic action of the structured vacuum medium. Exploration of these
predictions is deferred to future work. The simulator described in Section 6
can serve as a bridge, numerically validating the regimes where the analytic
approximations hold.

6 Simulating the Structured Vacuum

It turns out the structured vacuum model lends itself exceptionally well to
simulation. It is trivially parallel and uses operations that modern libraries
and GPUs are optimized to perform. We have implemented a simulator that
can evolve structured vacuum fields on a cubic lattice with periodic boundary
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conditions (or, optionally, boundary damping). We use it to evaluate how
the emergent behavior of the structured vacuum model can host physical
objects like massive hedgehog particles and self-propagating solitons.

We model a discretized structured vacuum, where each point in the lattice
is modeled as a Site object with a u field for the displacement vector ui, an
e field for the orthonormalized frame eaµ, and a sigma field for the scale field
σi.

Aside from the parameters that define the lattice size and site spac-
ing, the simulator only uses the parameters presented in the action in this
manuscript—no fine-tuning parameters are required. The simulator is writ-
ten in C++ and uses several modern libraries for performing numerical op-
erations. We have released the simulator as free and open source software,
available at: https://github.com/justinmeza/vacuum.

We set the parameters in our simulator based on the coupling constants re-
quired to recover the various physical theories we have demonstrated throughout
this manuscript. Table 2 shows the parameters used in our 643 structured-vacuum
benchmark simulation, along with their physical provenance.

The simulator uses a fourth-order Runge-Kutta method to evolve the fields
forward in time. The Runge-Kutta method is well-suited for this type of simula-
tion, as it provides a good balance between accuracy and computational efficiency.
A typical simulation run consists of an setup phase, where the fields are initial-
ized, a Courant–Friedrichs–Lewy condition check to ensure stability, followed by
a series of time steps where the fields are evolved according to the structured vac-
uum equations of motion. Status updates are printed to the console along with a
hysteresis-based estimated time until simulation completion, and simulation snap-
shots are saved to storage for later analysis and visualization.

On a multi-core CPU, the simulator can take advantage of parallelism by using
the OpenMP library to parallelize the evolution of the lattice sites. When using
a GPU, the simulator can take advantage of parallelism to significantly speed up
the simulation. We marshal the lattice sites in to and out of flat arrays of GPU
memory, allowing us to perform vectorized operations on the fields. The user
can set environment variables to control the number of threads used for OpenMP
and/or interfacing with the GPU.

We provide a variety of visualization tools to analyze the simulation results.
The tool kit includes Python scripts that can read the simulation output and plot
2D/3D heat maps of the fields, as well as animations of the simulation evolution
over time. We also provide lower-level visualization tools that allow the user to
visualize the raw contents of the fields in 3D. All of the figures shown in this section
were generated in a few command lines using these tools.

We evaluate our simulator on a 643 structured vacuum lattice with periodic

28

https://github.com/justinmeza/vacuum


boundaries. The lattice spacing is set to 1.0 in natural units, and the simulation
runs for 1000 steps. We run the simulator on a Framework 13 laptop with the
specifications shown in Table 1. We evaluate two different types of excitations to
stress test opposite dynamical behavior in the structured vacuum: charge-carrying
solitons and propagating waves.

Processor Intel® CoreTM Ultra 7 165H
Core Configuration 16 cores (6P + 8E + 2LP-E), 22 threads
Base Frequency 1.5GHz (E-cores), 2.0GHz (P-cores)
Max Turbo Up to 5.0GHz (single P-core)
Graphics Intel ArcTM GPU + Xe LPG
Memory 64GB DDR5-5600 (dual channel)
Storage 8TB PCIe Gen4 NVMe SSD
Operating System GNU/Linux (Fedora 42, x86 64)

Table 1: Simulation system specifications.

6.1 Charge-Carrying Solitons

To seed a single charged soliton in the structured vacuum, we populate both dy-
namical fields on the lattice. Not only do both fields provide the soliton with
mass and charge, but each also crucially balances the forces of the opposite field,
allowing the soliton to oscillate in place without propagating.

For the displacement field, ui, we initialize a purely azimuthal vortex that
falls off as uψ ∝ 1

ρ2
. This displacement vortex supplies a long-range Coulomb-like

field and stabilises the core. The rotation field, eaµ, is the product of two smooth
rotations about the radial unit vector n̂ and stores the spin-texture and the torsion
monopole that gives rise to electric charge.

Displacement Field We define the soliton core radius as Re. Outside the core
(ρ > Re), we add a thin azimuthal halo,

u(ρ, ψ) = u0
R2
e

ρ2
êψ, ψ̂ ≡ (− sinψ, cosψ, 0),

which supplies the 1
ρ2

elastic strain required by the lowest-order field equation and
ensures that the lattice Coulomb energy matches the continuum value once the
system is let free to relax.
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Rotation Field For every lattice site, we compute the distance ρ = |x−xc| to
the chosen center and the radial direction n. We then apply two rotation matrices
successively:

1. A hedgehog flip Rhedg(ρ) = exp(+χ(ρ)n · J) with χ(ρ) = π sech( ρ
Re

). This
carries the tetrad smoothly from the identity at infinity to a 180◦ inversion
at the origin and produces a net torsion charge q = +1.

2. A half-spin twist Rspin(ρ) = exp(+θ(ρ)n · J) with θ(ρ) = π
[
1− tanh( ρ

Re
)
]
.

This extra SU(2) half-turn endows the defect with the correct fermionic sign
change under a 2π rotation.

The stored frame is the composition of these two rotations, e = RspinRhedg. Be-
cause both angles go to zero exponentially, e is exactly the vacuum frame outside
a sphere of radius ≈ 3Re; no high-k noise is introduced.

Figure 2 on page 33 shows 3D renderings of the initial state of shear and twist
sectors and a cross-section of the z-axis at n = 32 every 500 simulation steps.

6.2 Propagating Waves

We encode a vector potential akin to magnetism in the displacement field ui and
a torsion field akin to electromagnetism in the rotation field eaµ. These two fields
are then enveloped in a Gaussian wave-packet that travels in the +x direction.

Envelope and Carrier We define a separable Gaussian with longitudinal
coordinate ξ ≡ x− xc and transverse coordinates η ≡ y − yc, ζ ≡ z − zc,

env(ξ, η, ζ) = exp

(
− ξ2

2σ2x
− η2

2σ2y
− ζ2

2σ2z

)
,

and a carrier phase ϕ = kξ with wave–number k = 2π
λ and frequency ω = ck, c ≡

λT
λS . Throughout we fix the propagation, electric and magnetic axes to

k̂ = +x̂, ê = +ŷ, b̂ = +ẑ
(
b̂ = k̂× ê

)
.

Displacement Field The complementary shear component is taken along the
magnetic axis,

u(x) =
A0

k
env sin kξ b̂, ∂ξu =

A0

k

(
− ξ

σ2x
env sin kξ + k env cos kξ

)
b̂,

and the canonical momentum is set to pi = −c ∂ξui so that the linearised shear
equation ∂tui = pi holds exactly at t = 0
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Rotation Field A small-angle rotation about the rank-1 generator ê ⊗ k̂⊤

produces the twist sector. The rotation angle and its longitudinal derivative are

θ(ξ, η, ζ) =
A0

k
env cos kξ, θ′ξ = A0

(
− ξ

σ2x
env cos kξ − k env sin kξ

)
.

Energy Balance Because (e, u) and (ω, p) are phased as above, the quadratic
energy density

E = λS
1

2

∣∣∇u∣∣2 + λT
1

2

∣∣∇T 0̂
∣∣2 + 1

2

(∣∣p∣∣2 + ∣∣ω∣∣2)
is positive definite, localised by the Gaussian envelope, and splits equally between
electric and magnetic sectors, reproducing the continuumMaxwell result toO

(
A2

0

)
.

Similar to before, Figure 3 on page 34 shows 3D renderings of the initial state
of shear and twist sectors and a cross-section of the z-axis at n = 32 every 500
simulation steps. Since the wave packet is symmetric about the x− and y-axes,
we show a slice of the twist field at z = N

2 as a representative view. The color
gradient represents the displacement of the vector ui and rotation of the frame ei
at each site, with higher contrast colors indicating larger displacements.
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Parameter Natural Simulation Provenance

λS 1/(32πG) 1.0 Normalises the spin-2 kinetic term;
fixes the code light-cone once λT =
λ1.

λT = λ1 1.0 Ensures photons propagate at the
same speed as gravitons (cT = cS).

λC ωBD 105 Brans–Dicke bound from Cassini
tracking: ωBD ≳ 4× 104 [16].

αS 1/(16πG) = 2λ1 2.0 Matches the cubic part of the
teleparallel Einstein–Hilbert [2, 3]
action.

αT
2α2

45,m4
e

∼ 10−14λ1 10−14 Euler–Heisenberg one-loop value
for low-energy quantum electro-
dynamics [13]; kept tiny so that
non-linear optics is perturbative.

αC ∼!10−120M4
Pl 10−8 Toy dark-energy scale: tiny but

large enough to resolve numerically.

αH ≤ 10−6λ1 10−6 GW170817, GRB170817A arrival-
time bound on |cGW − cγ | [1].

αR ≤ 10−8λ1 10−8 Pulsar-timing array limit on run-
ning G (strain–dilaton mixing).

αP ≤ 10−8λ1 10−8 Same order as αΣ to avoid excessive
σ–torsion coupling.

Table 2: Couplings used in the structured-vacuum benchmarks together with
their physical provenance.
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Figure 2: Simulated charge-carrying particle in the structured vacuum.
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Figure 3: Simulated propagating wave in the structured vacuum.
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7 Conclusions

In this work, we posed the question, “What emergent behavior arises if the vacuum
of space is not empty but has structure?” To help answer this question, we en-
dowed the vacuum with a geometric structure consisting of a displacement field, a
rotation field, and a scale field. We then found that through successive derivation
and elimination of unphysical interactions between these fields, our model natu-
rally led to the emergence of relativistic gravity from its pure shear interactions,
electromagnetism from its pure twist interactions, and a scalar-tensor field through
its scale interactions. A potentially fruitful area of future work is to explore the
cross-coupling between these fields—if they are measurable then they hint at hith-
erto undetected physics. We also release a free and open source simulator that
allows for curious readers to explore the structured vacuum model and its emer-
gent behavior in a numerical setting. It is our hope that this work encourages
a curious and inquisitive view toward the vacuum of space and inspires further
research into physics that may be hidden in seemingly empty space.

A Invariant Candidates

Below we enumerate every two- and four-derivative candidate that can be formed
from the declared first-derivative blocks

Sµν ≡ ∇(µuν), T aµν ≡ 2D[µe
a
ν], ∇µσ,

together with gµν , ηab, ϵµνρσ. We use the Hodge dual on spacetime indices, T̃ aµν ≡
1
2 Eµν

ρσT aρσ, with Eµνρσ =
√
−g εµνρσ.

For each discarded term we give the reason, using the criteria from Sections 4.1
and 5.1:

b boundary / total divergence (integral independence)

0 identically zero (symmetry/antisymmetry)

e proportional to a quadratic EOM (field redefinition)

p/t violates the parity/time-reversal projection

r redundant / algebraically dependent (Schouten identities, index symmetries,
2-form identities)

g pure-gauge spin-connection artifact (we work with flat ω, R[ω] = 0)

t trace moved into σ (use σ = ln |e| ≃ Sµµ + O(S2) so isotropic dilation is
carried by σ)
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A.1 Quadratic (Two-Derivative) Invariants

The three kept terms are SµνS
µν , T aµνTa

µν , and (∇σ)2. All other candidates fall
into one of the cases below.

A.1.1 Terms linear in a first derivative

• ∇µu
µ = Sµµ. b , integrates to a boundary; also t , isotropic part carried

by σ.

• ∇µσ alone. b , surface term.

• T aµν alone. 0 , cannot form a scalar without ϵ (which would be p/t ).

A.1.2 Built from ∂u

• Full gradients ∇µuν∇µuν and ∇µuν∇νuµ decompose into SµνS
µν +AµνA

µν

with Aµν antisymmetric. AµνA
µν is r / g ; keep only SµνS

µν .

• Trace terms such as (Sµµ)
2 or SµµSρσS

ρσ are t .

A.1.3 Built from T a
µν

Let T ρµν ≡ ea
ρT aµν . In 4D the classical invariants are

I1 = TρµνT
ρµν , I2 = TρµνT

µρν , I3 = TµT
µ, Tµ ≡ T νµν .

• Keep I1 (i.e. T aµνTa
µν).

• I2, I3 are r and e .

• Parity-odd T a·T̃a = ϵµνρσT aµνTa ρσ/2 is p/t at quadratic order (its square

appears at quartic order below and is kept).

• Nieh–Yan [11] density is b / g for R[ω] = 0.

A.1.4 Cross terms among S, T,∇σ

• SµνT
aµν is 0 .

• Sµν ∇µσ∇νσ has three derivatives, not quadratic.

• T aµνϵ
µνρσ∇ρσ∇σσ is p/t and not quadratic.
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A.1.5 σ-sector with second derivatives

• (□σ) or (∇µ∇νσ) at quadratic order are e / r via parts and □σ = 0.

A.2 Quartic (Four-Derivative) Invariants

The kept basis in Eq. (12) is:

(i) αS (SµνS
νρSρσS

σµ − SµνS
µνSρσS

ρσ) ,

(ii) 1
4 αT (T a · Ta)2 , (iii) 1

4 αB

(
T a ·T̃a

)2
,

(iv) αC
(
(∇σ)2

)2
,

(v) αH S
µνSµν T

a
ρσTa

ρσ,

(vi) αR S
µνSµν (∇σ)2, (vii) αP T

a
ρσTa

ρσ (∇σ)2.

A.2.1 Pure-shear S4

Two non-trace contractions:

S1 = Tr[S4], S2 = (Tr[S2])2.

Traceful variants are t . Keep S1 − S2. The orthogonal combination is r .

A.2.2 Pure-twist T 4

With Xa
µν = T aµν :

(Xa ·Xa)
2, (Xa ·X̃a)

2, (Xa ·Xa) (X
b ·X̃b).

Keep (Xa ·Xa)
2 and (Xa ·X̃a)

2 (both are parity even). The mixed product with a

single dual, (Xa ·Xa) (X
b ·X̃b), is p/t . Index-shuffle quartics are r .

A.2.3 Pure-scale (∇σ)4

Only
(
(∇σ)2

)2
is independent. Second-derivative forms are e / r .

A.2.4 Shear–twist S2T 2

H1 = SµνSρσT
aµρTa

νσ, H2 = Sµ
ρSνρT

aµσTa
ν
σ,

H3 = SµνSρσT
aµνTa

ρσ, H4 = SµνSρσT
aµρT̃a

νσ.

H3 is 0 , H4 is p/t (one dual). H1,2 reduce to the kept helixity SµνSµν T
2 up

to boundary terms ( r / e ).
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A.2.5 Shear–scale S2(∇σ)2

R1 = SµνS
µν (∇σ)2 (kept), R2 = Sµ

ρSνρ∇µσ∇νσ is e / r .

A.2.6 Twist–scale T 2(∇σ)2

P1 = T aρσTa
ρσ (∇σ)2 (kept), P2 = T aµρTa ν

ρ∇µσ∇νσ is e / r .

A.2.7 Mixed with ϵ

Single-dual (single ϵ) structures such as SµνSρσT
aµρT̃a

νσ or (T a ·T̃a)S2 are p/t .

The double-dual parity-even combination
(
T a ·T̃a

)2
is kept and listed above.

A.2.8 Quartics with derivatives on the blocks

Forms like ∇αSµν∇αSµν , ∇αT
a
µν∇αTa

µν , ∇µσ∇µ

(
(∇σ)2

)
are r / e .

A.2.9 “Cross-sector squares” of vanishing/odd quadratics

Squares of quadratic terms that are 0 or violate p/t remain excluded, except

when the square restores even parity by introducing a second dual; this is precisely
the case of (T a ·T̃a)2, which is included.

In summary, at two derivatives the only nontrivial scalars are S2, T 2, and (∇σ)2.
At four derivatives, up to boundaries and quadratic EOMs, the complete parity-
even, local, Lorentz-covariant, index-algebra-unique set built from these blocks is
exactly the seven terms kept in Eq. (12).
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